Dr.-Ing. Henrik Schneider
Arbeitsgebiet(e)
Kontakt
hschneider@rsm.tu-...
Reducing emissions of carbon dioxide and other greenhouse gases to limit global warming is one of the greatest challenges of our time. The transformation of the energy industry is ongoing towards carbon-free or carbon neutral energy sources. While renewable energy sources like solar and wind power suffer from short- and long-term fluctuations, biomass combustion can produce large amounts of power and heat independent of seasonal and weather conditions.
Applying carbon capture and storage (CCS) technologies to biomass combustion will result in carbon-negative emissions and therefore biomass energy with carbon capture and storage (BECCS) has a great potential to even reduce the CO2 concentration in the atmosphere. One promising concept to efficiently capture and store CO2 after the combustion process is burning biomass in an oxyfuel atmosphere. Thereby large amounts of exhaust gases consisting mostly of CO2 and H2O are recirculated into the combustion chamber and pure oxygen is added.
The replacement of N2 by CO2 and H2O in an oxyfuel atmosphere strongly influences the combustion. Different temperature and velocity profiles as well as combustion instabilities can be observed. For a detailed understanding of the chemical and physical processes the , which is supported by the German Research Foundation ( SFB/Transregio 129 Oxyflame), was set up in 2013. Its vision is to develop methods and models to achieve „predictive engineering“ as a design tool for the engineering of burners and boilers with oxyfuel combustion. DFG

An optically accessible combustion chamber in the power range up to 70 kWth is operated under oxyfuel conditions at the RSM. The full optical access allows the application of optical and laser diagnostics to investigate key combustion quantities in-situ with high spatial and temporal resolution.
Advanced optical diagnostic techniques including Particle Image Velocimetry (PIV), Particle Tracking Velocimetry (PTV), Laser-Induced Fluorescence (LIF), Thermographic Phosphor Thermometry (TPT), Coherent anti-Stokes Raman Spectroscopy (CARS), Tunable Diode Laser Absorption Spectroscopy (TDLAS) and Laser-Induced Incandescence (LII) are used to gain a more detailed understanding of fundamental solid fuel combustion characteristics and the oxyfuel combustion process.

Fehler beim Laden der Daten
Beim Laden der Publikationsdaten von TUbiblio ist ein Fehler aufgetreten. Bitte versuchen Sie es zu einem späteren Zeitpunkt erneut.
-
{{ year }}
-
; {{ creator.name.family }}, {{ creator.name.given }}{{ publication.title }}.
; {{ editor.name.family }}, {{ editor.name.given }} (Hrsg.); ; {{ creator }} (Urheber) ({{ publication.date.toString().substring(0,4) }}):
In: {{ publication.series }}, {{ publication.volume }}, In: {{ publication.book_title }}, In: {{ publication.publication }}, {{ publication.journal_volume}} ({{ publication.number }}), SS. {{ publication.pagerange }}, {{ publication.place_of_pub }}, {{ publication.publisher }}, {{ publication.institution }}, {{ publication.event_title }}, {{ publication.event_location }}, {{ publication.event_dates }}, ISSN {{ publication.issn }}, e-ISSN {{ publication.eissn }}, ISBN {{ publication.isbn }}, DOI: {{ publication.doi.toString().replace('http://','').replace('https://','').replace('dx.doi.org/','').replace('doi.org/','').replace('doi.org','').replace("DOI: ", "").replace("doi:", "") }}, {{ labels[publication.type]?labels[publication.type]:publication.type }}, {{ labels[publication.pub_sequence] }}, {{ labels[publication.doc_status] }} - […]
-
Anzahl der Einträge in dieser Liste: >{{ publicationsList.length }}
Es werden nur die {{publicationsList.length}} neuesten Publikationen ausgegeben.
Vollständige Liste bei TUbiblio ansehen Diese Liste bei TUbiblio ansehen