Students at RSM
Theses, student projects & assistants

Putting your knowledge into practice

For exploring more present opportunities at RSM, please contact Dr. B. Böhm () and Dr. S. Wagner ()

Your job as a Hiwi at our institute could involve the constructive adaptation of test rigs, the assistance of measurement campaigns involving laser diagnostics or the post-processing of data with advanced algorithms.

Currently no items available.

  • Quantifizierung der Messfehler von Line-of-Sight-Methoden für die Charakterisierung partikelbeladener Strömungen mithilfe von Imaging-Simulationen

    Quantification of measurement errors of line-of-sight methods for the characterization of particle-laden flows using imaging simulations

    2022/07/04

    Bachelorthesis

    Partikelbeladene Strömungen sind in einer Vielzahl von Anwendungen in Natur und Technik allgegenwärtig. Dies umfasst beispielsweise die thermochemische Oxidation von Eisenstaub in einem Brenner oder den Transport von Sedimenten in Flüssen oder Wolken. Zur experimentellen Untersuchung der physikochemischen Phänomene in solch komplexen Strömungen liefern optische Methoden wie die Diffuse Back-Illumination (DBI) Daten, deren Messfehler unter anderem aufgrund von hohen Partikeldichten sehr groß werden können.

    Eine Quantifizierung der Messfehler und deren Einflussparameter erfordert die gleichzeitige Kenntnis der wahren und gemessenen Größen. Da dies in der Realität jedoch nur unter eingeschränkten Bedingungen möglich ist, soll eine solche Messung in Software simuliert und die Messfehler des optischen Systems idealisiert quantifiziert werden. Ein solches Imaging-Tool wurde am RSM bereits erfolgreich programmiert und eingesetzt und soll innerhalb dieser Arbeit weiter verbessert werden. Hierbei soll das Tool insbesondere genutzt werden um die wichtigsten Einflussgrößen auf die Messfehler unterschiedlicher Parameter wie Partikelanzahldichte, -größe, -volumen etc. zu identifizieren und Handlungsanweisungen für Experimentatoren abzuleiten. Hierzu sind sowohl Kenntnisse der analytischen Geometrie im Kontext von Computer Vision, der Programmierung solcher Zusammenhänge in MATLAB und der Datenauswertung hilfreich.

    Supervisor: M.Sc. Christopher Geschwindner

    Announcement as PDF

  • Design and commissioning of a flat flame burner for studying premixed NH3/H2 combustion

    Konstruktion und Inbetriebsnahme eines Flachflammenbrenners zur Untersuchung der Verbrennung von vorgemischtem NH3/H2

    2022/06/13

    Masterthesis, Bachelorthesis

    The institute of Reactive Flows and Diagnostics focuses on fundamental combustion research and has established world-class combustion laboratories with novel optical diagnostics methods. Advanced imaging methods combing modern lasers and cameras enable understanding complex processes in gas and solid combustion.

    Reducing the carbon footprint in the energy sector has become a key challenge of this century that requires global collaborative efforts. Germany has committed to achieving carbon neutrality by 2045. Chemical storage of renewable energy such as wind and solar, followed by thermochemical conversion for energy utilization, is an important pathway to ensure a smooth transition to a carbon-neutral economy. The carbon-free nature of hydrogen (H2) and ammonia (NH3) has attracted considerable attention as potential substitutes for carbonaceous fuels. Both hydrogen and ammonia have very distinct combustion characteristics compared to hydrocarbons. Strategically cofiring NH3 and H2 appears to be well suited to remedy the difficulties in utilizing either fuel. However, NH3 and NOx emission and combustion instabilities are of critical importance in NH3/H2 combustion. To enable industrial facilities to be operated with NH3/H2 blends, fundamental understandings of the combustion characteristics under various conditions are urgently needed.

    For studying both emission and flame stabilization, quantitative multi-scalar data are of essential importance and provide novel insights into combustion chemistry. Simultaneous measurements of temperature and concentration of major species are only possible with combined Raman/Rayleigh scattering. However, due to incomplete spectral data libraries for high temperatures, this method requires careful calibrations in a flame with know temperature and concentrations, usually in a flat flame burner. Previous burner design used for hydrocarbon fuels are not suited for operating with NH3/H2 fuels. A new flat flame burner needs to be constructed and tested for a large variety of operation conditions (e.g., mixtures and equivalence ratio). The burner should be experimentally characterized using advanced laser diagnostics.

    The topic is suitable for both Bachelor and Master theses, and the work tasks are adapted accordingly.

    Supervisor: Dr.-Ing. Tao Li

    Announcement as PDF

  • Masterthesis

    In the pharmaceutical industry, the conversion of crystalline drugs to amorphous solid dispersions (ASDs) is a critical step in the process of manufacturing consumable tablets. To accomplish this, crystalline drugs are mixed with a polymer using a solvent, then the mixture is atomized through a spray drying nozzle, and finally the solvent is evaporated leaving behind the manufacturing-friendly ASDs.

    To effectively conduct a spray drying process, spray atomization is the key aspect. Therefore, the goal of this project is to use state-of-the-art laser diagnostic techniques to improve the physical understanding of the atomization process of the GEA PSD-1 spray dryer for the manufacturing of ASDs. This novel approach will first employ particle image velocimetry (PIV) to characterize the velocity field of the gas phase near the nozzle. Diffuse back-illumination (DBI) will then be used to characterize the spray morphology (opening angle, penetration length) of a mixture of the polymer Copovidone and a solvent. After characterizing the spray and flow with several operating conditions, correlations will be derived for the calculation of spray characteristics of the GEA PSD-1 nozzle.

    Supervisors: M.Sc. Cooper Welch, Dr.-Ing. Florian Ries

  • Laserdiagnostische Untersuchung der atomaren Zusammensetzung von Eisenpartikeln in Energiespeicherprozessen

    Laser Diagnostic Study of the atomic Composition of Iron Particles in Energy Storage Processes

    2022/05/02

    Masterthesis

    Das Fachgebiet Reaktive Strömungen und Messtechnik (RSM) befasst sich mit optischen Untersuchungen reaktiver Strömungen. Einer dieser Messtechniken ist die Laser Induced Breakdown Spectroscopy (LIBS) mittels derer im Rahmen des Clean-Circles-Projekts ein CO2-freier Kreislaufprozess zur Energiespeicherung untersucht werden soll. Speicher mit langen Ausspeicherzeiten und hohen Energiedichten gewinnen bei fortscheidendem Ausbau von erneuerbaren Energien immer mehr Bedeutung. In dem Kreislaufprozess des Clean-Circles-Projekts erfolgt die Einspeicherung der regenerativ erzeugten Energie mittels Reduktion von Eisenoxidpartikeln. Die entstehenden Eisenpartikel können zeitlich und räumlich getrennt durch eine Oxidation (bzw. Verbrennung des Eisens) die Energie wieder ausspeichern.

    Zur Entwicklung eines besseren Verständnisses, sowie zur Validierung und Verbesserung von Modellierungen der im Detail ablaufenden Prozesse während der Reduktion und Oxidation, werden experimentelle Daten benötigt. Hierfür soll die elementare Zusammensetzung von Eisen- und Eisenoxidpartikeln mittels der Laser Induced Breakdown Spectroscopy erforscht werden.

    Nachdem in einer vorrangegangenen Masterarbeit ein erster vereinfachter Messaufbau in Betreib genommen wurde soll dieser mithilfe der erarbeiteten Verbesserungen optimiert werden. Hierbei ist vor allem die Inbetriebnahme einer verbesserten Detektionseinheit zur Analyse der Plasmastrahlung entscheidend für eine genaue Bestimmung des Fe-O-Verhältnisses der einzelnen Partikel. Die Aufgabe umfasst anschießend die Durchführung von Experimenten unter Variation verschiedener Einflussparameter auf das LIBS-Signal. Mit den erzielten Daten ist anschließend ein Auswertungsschema zu Erstellen mit dem vom LIBS-Signal der Oxidzustand einzelner Partikel bestimmt werden kann.

    Supervisor: M.Sc. Maximilian Dorscht

    Announcement as PDF

  • Entwicklung eines Partikelabscheiders zur Prozessierung von Eisenpulver

    Development of a particle separator for processing iron powder

    2022/04/25

    Bachelorthesis

    Supervisors: M.Sc. Janik Hebel , Dipl.-Ing. Thomas Krenn

    Announcement as PDF

  • Entwicklung eines Partikelanalysators zur Bestimmung der Partikelgrößenverteilung

    Development of a particle analyser for particle size distribution measurements

    2022/04/25

    Advanced Design Project (ADP)

    Supervisors: M.Sc. Janik Hebel , Dipl.-Ing. Thomas Krenn

    Announcement as PDF

  • Laserinduzierte Fluoreszenz: Messung von Mischungsvorgängen

    Laser-induced fluorescence: measurement of mixing processes

    2022/03/24

    Bachelorthesis

    Laser-based optical diagnostics can be used to investigate complex physical systems non-intrusively and with high resolution. Laser-induced fluorescence (LIF) is suitable for obtaining spatially and temporally resolved information about, e.g., temperature or mixing in a flow. Molecules are excited with a laser and the characteristic fluorescence emission is detected with (high speed) cameras.

    In this work, the aim is to investigate mixing processes in an optically accessible engine by means of two-color or two-line LIF. The aim of this fundamental experiment is to visualize and characterize the gas exchange between cycles and the interaction between the gas flow and an injected spray.

    Within the scope of the work, the exact methodology will be selected for this purpose, the experiment will be set up and carried out, and the collected data will be evaluated and analyzed.

    Supervisors: M.Sc. Marius Schmidt, M.Sc. Cooper Welch

    Announcement as PDF

  • Masterthesis

    Supervisor: M.Eng. Konrad Koschnick

    Announcement as PDF

  • Optimierung und Inbetriebnahme eines Sensorsystems zur Charakterisierung von Ölfilmen in Elektromotoren

    Optimization and commissioning of a sensor system for the characterization of oil films in electric motors

    2022/02/25

    Masterthesis

    Supervisors: M.Sc. Matthias Bonarens, M.Sc. Ariane Auernhammer

    Announcement as PDF

  • Untersuchung der Oxidationseigenschaften von Eisenproben in einem optimierten Versuchsaufbau einer laminaren Eisenpartikel-Luft-Flamme

    Investigation of the oxidation properties of iron samples in an optimized experimental setup of a laminar iron particle-air flame

    2022/01/25

    Masterthesis

    Das Fachgebiet Reaktive Strömungen und Messtechnik (RSM) befasst sich mit moderner Verbrennungsforschung. Laser-diagnostische Methoden ermöglichen auf diesem Gebiet die messtechnische Erfassung komplexer Vorgänge in der Gas- und Feststoffverbrennung.

    Im transdisziplinären Forschungsverbund Clean Circles wird ein innovativer Energie-Stoffkreislauf untersucht. Hierbei wird elektrische Energie aus erneuerbaren Quellen in Eisen eingespeichert, welche über thermochemische Oxidation ausgespeichert und in thermischen Kraftwerken rückverstromt werden kann. Hierfür ist es notwendig ein tiefgehendes Verständnis der Oxidationsprozesse der Eisenpartikel zu haben.

    Um diese Oxidationsprozesse von Eisen in einer laminaren Eisenpartikel-Luft-Flamme untersuchen zu können wurde ein Seeder- und Brennerkonzept entwickelt. In der ausgeschriebenen Masterarbeit ist anhand von diversen Messtechniken dieser Aufbau mit unterschiedlichen Eisenproben zu charakterisieren und zu optimieren. Abschließend sollen Messungen zu den Oxidationseigenschaften der Eisenproben anhand des optimierten Versuchsaufbaus stattfinden und ausgewertet werden.

    Supervisor: Dipl.-Ing. Thomas Krenn

    Announcement as PDF

  • Weiterentwicklung eines laser-optischen Sensors zur Erfassung von Flüssigkeitsfilmdicken auf Metalloberflächen

    Advancement of a laser-optical sensor for the detection of liquid film thicknesses on metal surfaces

    2021/12/13

    Masterthesis

    Supervisors: M.Sc. Anna Schmidt, M.Sc. Matthias Bonarens

    Announcement as PDF

  • Applikation von ITO-Beschichtungen: Spray-Visualisierung und Messung der Wandbenetzung eines Spray-G Injektors

    Application of ITO-Coatings: Spray visualization and wall wetting measurements of a Spray G injector

    2021/11/11

    Bachelorthesis

    For the analysis of injectors in different combustion chambers, the interaction of the injected fuel quantity with the wall of the combustion chamber is of great importance. Here, fuel accumulates locally and then evaporates only slowly at the surface. In the case of the Spray G injector used, the individual wetting of the different injection plumes is also of interest.

    In this work, a novel indium tin oxide (ITO) coating will be investigated for suitability for spray wetting measurements. This material is an electrical semiconductor and at the same time largely transparent in visible light, which means that the wall wetting can be measured using an infrared camera and at the same time the spray can be characterized with visible light (Mie scattering).

    Supervisors: M.Sc. Lars Illmann, M.Sc. Marius Schmidt

    Announcement as PDF

  • Advanced Design Project (ADP)

    Supervisor: Dr.-Ing. Luigi Biondo

    Announcement as PDF

  • Characterization of soot formation of solid fuel particles in oxygen-enriched conditions

    Charakterisierung des Rußbildung von festen Brennstoffpartikeln unter sauerstoffangereicherten Bedingungen

    2021/10/19

    Advanced Research Project (ARP)

    The institute of Reactive Flows and Diagnostics focuses on fundamental combustion research and has established world-class combustion laboratories with novel optical diagnostics methods. Advanced imaging methods combing modern lasers and cameras enable the understanding of complex processes in gas and solid combustion.

    Soot emission is one of the most important issues in the utilization of hydrocarbon fuels. A deep understanding of the soot and nano-sized particle formation in gas and solid fuel flames is an essential aspect of combustion research. In laboratory-scale experiments, in-situ laser diagnostics have been widely established to gain fundamental knowledge. Laser-induced incandescence (LII) has proven to be a powerful tool for particle-concentration and particle-size measurements in combustion systems. This technique has been implemented in previous work and applied for 2D soot imaging measurements in a laminar diffusion flame fueled by ethylene, e.g., in a Gülder-burner configuration. To quantify the soot volume fraction, 1D extinction measurements have been performed simultaneously to calibrate the qualitative LII signals. These combined methods should be further applied for solid fuel combustion studies on the single-particle level. In further steps, in a well-established laminar flow reactor, semi-quantitative 2D LII imaging has been first conducted on bituminous coal and biomass particles. Here, the reaction zone and PAH formation could be visualized at the same time, e.g., by using laser-induced fluorescence (LIF) techniques, to support the interpretation of the soot formation.

    The comprehensive experimental data requires intelligent data processing algorithms. Within this work, simultaneously acquired image data should be evaluated in Matlab (image processing tools) using efficient programming structures (object orientated programming). The code structures should be friendly to further extension and maintenance. The main purpose of data evaluation is to extract essential parameters related to soot formation in solid fuel combustion. They are, e.g., 1D absorption ratio, 2D soot volume fraction, soot flame topology, particle positions, particle number density, particle size and shape and etc. Conditional statistical analysis that includes all parameters should be performed in a systematic way to enable a deep understanding of soot formation processes in single particle and particle group combustion.

    The topic is suitable for ARP and Master's theses, and the work tasks are adapted accordingly.

    Supervisor: Dr.-Ing. Tao Li

    Announcement as PDF

  • Development and Testing of a Machine Learning-based Flame Binarization Technique

    Entwicklung und Test einer auf maschinellem Lernen basierenden Flammenbinarisierung

    2021/10/06

    Masterthesis

    The early flame kernel development in modern spark-ignition engines is crucial in determining the efficiency and emissions involved in their operation. An extensive database of early flame images has been acquired by using high-speed planar Mie scattering (from particle image velocimetry) to record the evaporation of seeded oil droplets in an optically accessible single cylinder research engine. To analyze the flame development, the raw images must first be binarized (such that the flame is separated from the particle images).

    Despite the availability of advanced digital image processing algorithms, it remains a challenge to accurately binarize experimentally-obtained flame data due to a number of factors such as inhomogeneous lighting, reflections, and noise. The figure to the right shows an example raw image and overlain contours of a flame propagating adjacent to the spark plug. Even though the flame is easily recognizable to the human eye, it is difficult to algorithmically separate the flame from the surrounding features. Therefore, the goal is to use machine learning (ML) techniques such as DeepOtsu or convolutional neural networks, to achieve a more efficient and accurate universal model for flame binarization.

    Supervisors: M.Sc. Cooper Welch, M.Sc. Marius Schmidt

    Announcement as PDF

  • Advanced Design Project (ADP)

    Supervisor: Dr.-Ing. Luigi Biondo

    Announcement as PDF

  • Applikation von der SLIPI-Messtechnik: Entwicklung und Aufbau der Messtechnik und Anwendung zur Analyse von Kraftstoffeinspritzungen

    Application of the SLIPI measurement technology: development and setup of the measurement technology and application for the analysis of fuel injections

    2021/09/06

    Masterthesis, Bachelorthesis, Advanced Design Project (ADP)

    For the analysis of injectors in different combustion chambers, the injection and distribution of the fuel is of great interest. Hereby the injection penetration length as well as the vaporization rate can be determined and analyzed. The usual illumination of the injection mass by means of conventional LED illumination and Mie scattering leads to multiple scattering of the fuel particles.

    In this work, the Structured Light Illumination Planar Imaging (SLIPI) measurement technique will be used for spray analysis. Using the SLIPI technique, scattered light components can be effectively removed from Mie and LIF spray images, revealing spray structures of unprecedented quality.

    The topic is suitable for ADPs or Master's/Bachelor's thesis and the work assignments will be adapted accordingly.

    Supervisors: M.Sc. Lars Illmann, M.Sc. Marius Schmidt

    Announcement as PDF

  • Bachelorthesis, Advanced Research Project (ARP)

    Supervisor: M.Sc. Marius Schmidt

    Announcement as PDF

  • Entwicklung eines MIR-Kameraspektrometers an einem generischen SCR-Prüfstand zur HNCO Detektion

    Development of an MIR camera spectrometer on a generic SCR test rig for HNCO detection

    2021/09/06

    Masterthesis

    Supervisor: Dr.-Ing. Luigi Biondo

    Announcement as PDF

  • Erweiterung der Kohärenten anti-Stokes Raman-Spektroskopie (CARS) um die Möglichkeit der Gastemperaturbestimmung anhand des O2-Moleküls

    Extension of coherent anti-Stokes Raman spectroscopy (CARS) with the possibility of gas temperature determination based on the O2 molecule.

    2021/09/06

    Masterthesis

    Supervisor: M.Sc. Henrik Schneider

    Announcement as PDF

  • Masterthesis

    Supervisor: M.Sc. Marius Schmidt

    Announcement as PDF

  • Advanced Design Project (ADP)

    Supervisor: M.Sc. Ariane Auernhammer

    Announcement as PDF

  • Entwicklung und Charakterisierung einer beheizbaren Boden-platte für einen generischen Abgaskanal

    Development and characterization of a heatable base plate for a generic exhaust duct

    2021/05/17

    Advanced Design Project (ADP)

    Supervisors: M.Sc. Anna Schmidt, Dr. rer. nat. Steven Wagner

    Announcement as PDF

  • Konzeptionierung stabilisierter Eisenpartikel-Luft Flammen zur Untersuchung grundlegender Verbrennungseigenschaften“

    Conceptual design of stabilized iron dust flames for the investigation of basic combustion properties

    2021/04/01

    Advanced Design Project (ADP)

    Supervisor: M.Sc. Henrik Schneider

    Announcement as PDF